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Looping transitions occur in field-swept electron magnetic res-
onance spectra near avoided crossings and involve a single pair of
energy levels that are in resonance at two magnetic field strengths,
before and after the avoided crossing. When the distance between
the two resonances approaches a linewidth, the usual simulation of
the spectra, which results from a linear approximation of the
dependence of the transition frequency on magnetic field, breaks
down. A cubic approximation to the transition frequency, which
can be obtained from the two resonance fields and the field-
derivatives of the transition frequencies, along with linear (or
better) interpolation of the transition-probability factor, restores
accurate simulation. The difference is crucial for accurate line
shapes at fixed angles, as in an oriented single crystal, but the
difference turns out to be a smaller change in relative intensity for
a powder spectrum. Spin-3 Cr®* in ruby and spin-3 Fe®* in
transferrin oxalate are treated as examples. © 1998 Academic Press

Key Words: simulation of S > 1; looping transition; chromium
ion; iron ion; transferrin.

INTRODUCTION

A “looping transition” occurs in field-swept electron mag
netic resonance (EMR) spectra $> % systems at fields and

molecular orientations where energy levels have avoided Cro§
ings: a given pair of energy levels is in resonance at tw
separate magnetic fields, before and after the (avoided) cro
ing. A plot of the two resonance fields as a function of th
orientational angles is typically U-shaped or, in some cases,

closed oval. Figure 1 displays a looping transition in ruby.

When the separation between the two resonance fields of a

looping transition is within a few linewidths (in Fig. 1, whén

Pilborow @) for S = g systems. In the EMR of a ruby single
crystal at 9.521 GHz, looping transitions are important whe
the angle between theaxis and the magnetic field is near 30°
and near 89°. Pilbrowt al. (3) were especially concerned with
the asymmetry in width and intensity of the two companior
resonances when close together. They simulated the fiel
swept EMR spectra by computing, field-point by field-point,
the transition frequenciesg(B) and corresponding squared
transition-dipole matrix element¥;;(B)|® for use in the (fre-
quency-swept) formula for the spectral response fun&@),

S(B) = C'|Vy(B)[f (V(B) — Vo, o). [1]
Heref(v — vq, o) is a (frequency-swept) lineshape function
centered at the spectrometer operating frequegcgnda, is
the linewidth in the frequency domain. [Notation difference
we usev, where Pilbrowet al. (3) usev,, and we use/(B)
where they use/y(B).]

At each field strength the calculation ofB) and |V;;(B)|?
requires a matrix diagonalization. In a powder simulation
where the calculational effort is multiplied by the number of

orientations and the number of field points, Eq. [1] is ofter
igpplified by assuming that the transition frequency varie
inearly with the magnetic field near resonane) — v, ~

— Bg)b, and that the transition-dipole is constant, to obtair

an equivalent, but approximate, field-swept lineshape functic
V%Hd nearBg:

S(B) ~ C'[V;(Bo)|*((B = Bo)b, a). (2]

is close to 30°), accurate simulation of the lineshape becontésreb is a constant, and the resonance figjgdis wherev, =

complicated. We present here a simple computational solutiefB,). The considerations for making the frequency-to-fielc
for calculating EMR spectra for looping transitions. The kegonversion were discussed by Aasa anchiMgard b) and by
idea is to approximate the highly non-linear difference betwe&ilbrow (6). In the simplest case, the separation of the enerc
the two energy levels as a cubic polynomial in the magnetievels near a transition is a linear function of magnetic field, s
field by using four constants already calculated in determinitigat the field-normalized intensity of the lineshape is inversel
the resonance field4 (2. proportional to the effectiveg factor. More generally, the
Looping transitions have been studied experimentally afiéld-normalized intensity is inversely proportional fio| =
theoretically in depth by Pilbrovet al. (3) and by Wang and |dv(B,)/dBy|, the derivative with respect to field of the sepa-
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58 GAFFNEY AND SILVERSTONE

35 areg, = 1. 9840 g, = 1.9867, andd = —5.747 GHz=
= 30 E —0.191699 cm™. Following Ref. 8), we replacey, andg, by
9 E an isotropic averagg = 1.9858. The energy levels of Eq. [3]
qE)» 25 are easily obtained by diagonalizing 44 matrix.
T ook Pilbrow et al. (3) showed that when the angbebetween the
F S magnetic field and the crystalaxis @ axis in Eq. [3]) was near
I 15F 30° or 89°, the two branches of looping transitions are seen
S 10F a magnetic field range that is a small multiple of the apparel
3 5 E linewidth. We discuss here the 30° case, which we hav
o 3 1 already visited in Fig. 1, where the coalescence and disappe

Obia Lo du e b s ea danna Lo adba s d

ance of the looping transition near 30° is apparent. Wé set

0 50 100 150 200 250 300 350 400 29.4° and plot in Fig. 2 the four energy levels Bsncreases
Resonance magnetic field B (mT) from 0 to 500 mT. Notice that the two middle levels, labeled by

FIG. 1. Resonance magnetic field versus polar angle for a typical loopi and 3 in the flgur_e, undergo an avoided _CfOSSIﬂg_ﬁbaf.
transition in ruby. See text for details. 00 mT. The experimentally observed looping transition link:
Level 2 with Level 4 and takes place at a frequency of 9.52
GHz = 0.317586 cm®. The inset in Fig. 2 shows how the

ration of energy levels between which transition occii)s ( €nergy separation between these two levels passes throl
Neither of these approximations is accurate at a looping trdffSonance first near 150 mT and a second time near 200 n
sition. (In high magnetic field, Level 4 hasg = + , while Level 2
EMR spectra provide many other examples, besides thathgsms = —%-)
ruby, of looping transitions in well-studied samples. Some of Next we plot in Fig. 3 the field-swept EMR spectrum for
these examples include tf® = 2 systems, oriented single = 29.4°. The dots are an "exact” application of Eq. [1] wih
crystals of sodium- or lithium- compensated ferric centers fyNNing from 120 to 225 mT in steps of 1 mT. The dot
a- quartz 7.9, and anS = 3 example, alkali halide doped with SPEctrum can be compared to Fig. 2a of R8J. The dashed
Cr(CNR~ (9), In biological samples, interdoublet transitions idine in Fig. 3 is the result of using the usual “linear approxi-
EMR of S = £ systems provide examples of looping transitiondation” for v(B) at each of the two resonance fields, Eq. [2]
when the applied microwave frequency is in the range of 1 twice. The fit is not bad, but shows discrepancies between tl
4 times the zero-field splitting parame®@r This condition is WO resonances that get worse tagicreases (see below).
found in X-band EMR of high-spin ferric transferril@, 11
and in W-band simulations with parameters characteristic of
ferric lipoxygenaseX2). To illustrate applications of the cubic
polynomial approach to converting frequency-swept line-
shapes to field-swept ones, we first revisit the ruby example of
Pilbrow et al. and then apply the technique to simulations of
the X-band EMR spectra relevant to transferrin oxalate.

D=-0.191699 cm™
g=1.9858 4

0=294"

r v=9.521 GHz 1

HOW THE LINEAR APPROXIMATION FAILS NEAR A . .
F- (0.31759 cm™) n

LOOPING POINT: S = g AXIALLY SYMMETRIC CASE

energy (cm™)

+ . -

To derive an approximate field-swept lineshape function is
to replace the right-hand side of Eq. [1] with an expression
explicitly simple in its dependence & — B, and accurate. To
illustrate the problem and its solution, we borrow the ruby case
discussed by Pilbrovet al. (3), which (i) provides a good
experimental example of a looping transition in single crystal
studies, and which (i) is relatlvely simple. The ruby crystal FiG. 2. The magnetic-field dependence of the energy levels for an axiall
contains two magneti€ = 3 Cr‘:}+ impurity sites related by symmetricS = 5system with Hamiltonia given by Eq. [3]. The magnetic

|nvers|on and has the aXIa”y Symmetrlc Spln Hamlltonla)] ( field B is set at an angle of 29.4° with ﬂEaXlS and we have taked =
—5.747 GHz= —0.191699 cm* andg, = g, = g = 1.9858. This is a case
. L discussed by Pilbrowt al. (3) for Cr®* transitions in a ruby single crystal. The
H= B[ gHSsz + gL(S(BX + S/By)] + D(S§ - §SZ)_ [3] |ns?t1 shows the dependence_ on magngtlc field of the‘energy sgparatlon
cm ) of the Levels 2 and 4 in the looping transition discussed in the text
) ) o _ observed experimentally at 9.521 GHz0.317586 cm®. Note that the 2~
The experimental parameter3) (with uncertainties omitted) 4 looping transition is created by an avoided crossing between Levels 2 and
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(@) D =-0.191699 cm™ where
& 9= 1.9858
;L 0=204 _dv(B)  1dAE(By) ,
c i % o,= 10.006 D| = 34.492 MHz = 4B, _h dB [7]
L / .
s N . . N .
§ . Y v = 9521 GHz Equation [5] is a_hnegr approximatiorfor v(B)'— Voasa function
o . 3 o~ 7 of B. The inset in Fig. 2 shows the magnetic field dependence
. % - V(B) at # = 29.4° for a looping transition. The horizontal linevgt
. Ry = 9.521 GHz intersects the curve at the two resonance fielc
A s B LiaSe i HLS0L 0 A e ot e g
o are —0. and 0. crmT, respec-
120 140 160 180 200 220 tively. The approximation [4]-[7] has been used recently in sim
B (mT) ulations of bothS = 2 (13 andg (11) systems; numerous other
) references can be found in Re®).(
(o) , D=-0.191699 cm™ To calculate Fig. 3, one needs an explicit lineshape functio
c e 9= 1'98?8 f (Vv — Vg, 0y). While a Lorentzian might be more fundamental, we
.2 ;Y 0=294 . . . . e .
5 [ opted for a Gaussian to mimic (slightly simplified) what Pilbrow
9 S o, = 10.006 DI = 3‘?’:492 MHz et al. (3) used to fit the ruby spectra. In any event, the naturfe of
) Ky : is not paramount to our main point, to be explicated later [appro
S - imating v(B) — Vv, by a cubic polynomial irB — B,
(]
2
IS \
= .h o~ vV = 9521 GHZ — — 7(V(B)*VD)2/20'5
S ol 0 f(v(B) — Vo, 00) o2m € (8]
‘ : : I : 1 2 2
120 140 160 180 200 220 g (BB 2ov/b)? [9]

B (mT) |b|(o'\,/|b|)\/ﬂ
FIG. 3. Exactand approximate calculations of spectra are compared fBpr the width parameter,, we took 0.00GD|/h [0.0011502

the X-band (9.521 GHz) transitions between Levels 2 and 4 shown in Fig,..—1 _ ;

m * = 34.482 MHz]— mpromi f th veral values
2, a case taken from Pilbrowt al. (3): (a) absorption, (b) derivative of ¢ di s i 8 fi ]h aco .p omise of the several value
absorption. For the exact calculation, the energy matrix was diagonalizeoua?te In Ret. 3) to fit the experiment.

. . 2

1 mT intervals using Eq. [1] (dots). This is compared with the sum-of-the- 10 calculate the intensity factg¥;(B)|*,
two-resonances linear approximation (dashed line), for which only two
diagonalizations, one at each of the resonance fields, were used. For the V.(B)|]2 = B)IS- 2

> - ) > ) i = i e vi(B))|4, 10
dots, the transition probability factor was determined at each field, while | il ) [wi(B)] i Ui )| [10]
for the dashed line only the two probabilities at each of the resonance fields ) ) ) ) ) )
were used. The lineshapes were Gaussian in both cases. For the egé® must specify the directiay of the microwave field, which

calculation,v(B) — v, is substituted directly into theof Eq. [8], while the  js perpendicular to the static fieBl but not necessarily to the

sum-of-the-two-resonances linear appioximation used Egq. [9]._ Ih bOE?’yStaIC( Z) axis. Pilbrowet al. (3) took e, to be 6° out of the

casesa, was [0.006 D| = Q.001_1502 cml =_34.482 MHz. Remaining | in their Fia. 2. but h e opted f implicit q

physical parameters are given in the figure itself. Xy plane in _elr 9. - u ere we opted for simplicity an
took e, to be in thex direction.

In this first sample calculation, patterned after Ré}), the
separation of the resonance fields is 52.3 mT, while the left ar
right half-width-at half-maximum values aré2 In 2 o /|b| =
7.99 and 5.57 mT, respectively. Thus the separation is a litt
less than 4 times the sum of the half-width values. The sun
of-two-separated-resonances (linear approximation) provides
fair fit in the example shown, but the deviation in the middle
region is clearly visible in Fig. 3, as is a shift in the maximum

v — (R _ dv(Bo) } _ R\ d*v(By) on the right. More pronounced deviations are visible 6as
V(B) — Vo = (B~ By +5(B-By SRR C :
dB, 2 dB; increases, and the resonance fields move closer together, c
lesce, and then disappear, as is shown in Fig. 4. Notice that
~(B = Byb [5]  Fig. 4 the total change if is only 1°.

As in Fig. 3, the dots in Fig. 4 represent the spectral respon

function based on Eq. [1] with a Gaussian (Eq. [8]) foand

The approximation (see Reb)j that leads to Eq. [2] for a
field-swept lineshape results from expandin¢B) and
|V;;(B)|? about the resonance fieB, and keeping just the
leading terms,

|Vij(B)|2: |Vij(Bo)|2+ B [6]
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absorption
derivative of absorption

o 8302 - 0 =302"

=-0.191699 cm™ D=-0.191699 cm™

g=1.9858 g=1.9858

v, =9.521 GHz v, =9.521 GHz

c,=10.006 D| = 34.492 MHz o, = 10.006 D| = 34.492 MHz

6 =304’ 0 =304°
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FIG. 4. Exact and approximate calculations of spectra are compared fartthad (9.521 GHz) transitions between Levels 2 and éirass from 29.4° to 30.4°:
(a) absorption, (b) derivative of absorption. For the exact calculation, the energy matrix was diagonalized at 2 mT intervals using Eq. [1] (dots). This is com|
with the sum-of-the-two-resonances linear approximation (dashed ling),#029.4°, 29.7°, 29.9°, and 29.975°, which is just before coalescence at 29997589
Also shown at all values o, including two values 30.2° and 30.4° that are past the coalescence angle and for which there are no resonance fields, is (ii) the
approximation” (solid curve that passes through most of the points), in wiigh— v, is approximated by a cubic polynomial B, and in which the squared
transition-dipole factors are approximated by linear interpolation £9.4°, 29.7°, 29.9°, and 29.975°) or by (for convenience—see text) cubic interpotatioB.2°
and 30.4°). The lineshapes were Gaussian (Eq. [8]).cawias|—0.006D| = 0.0011502 cm* = 34.492 MHz. Remaining parameters are given in the figure itself

the dashed line represents the sum of two separated resonaiveg and featureless compared to the true lineshape. /
contributions using the linear approximation fegiB). Notice 29.975°, the usual approximation is almost a straz’tight Iir;e. I
in particular that at 29.9°, the usual approximation is symmeict, |b| = |dv(B,)/dBy| is so close to 0, tha™ (B~Bo)"72(/b)
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~ 1, and the spectral response function approaches the cfsom substituting Eqs. [12] and [15] into Eq. [1] is what we

stant, refer to as the “cubic approximation” (even though the
slower-varying squared-transition-dipole factors are onl
C'|V;(By)|? approximated linearly):
By) ~2————. 11
S(B) ~ 2~ 5 [11]

B — By, B — By,
_ SB)=C'|g —g_ ViBul*+ g5 Vi(Bn)®

The factor of 2 (cf. Eq. [1] and Eq. [9], the latter with= 0) 01 02 02 o1
is from the equal contributions of the two resonances that are X f((B — By (B — Bgy)(Co + ¢4B), 7). [16]
coalescing towards the sarBg. This is what is happening at
29.975° in the sum-of-two-separated-resonances linear approke cubic approximation fo¥ = 29.4°, 29.7°, 29.9°, and
imation. Also shown in Flg 4 via solid lines is the CUbiCZg_975° is p|0tted in F|g 4 as an unbroken curve; it passe
approximation, discussed next. through each of the “exact” points at the resolution of the figur
in this paper.

When 6 exceeds 29.9759°, the looping transition is Nnc
longer in resonance at any field. Nevertheless, it may still b
Ogaen in EMR if the frequency range of its linewidth overlap:

CUBIC APPROXIMATION NEAR THE LOOPING POINT

We saw in the preceding section that near a looping point t gen ! ¢ This is th in Fiq. 46
magnetic-field derivative of the transition energy approach ° microwave frequency. This 1S the case in F1g. 4 4o

zero, causing the linear-approximation field-swept spectral f H.2° and 30_'40' (tlnllFlgI.tZ_ of Rtef3¥, t_her:]t?O.4° Zptectrulm Ilst
mula to fail. The crux of the problem is to approximate thg"OWn experimenta y.) It is quite straightiorward to calculat

curve ofv(B) — v, vs B, such as is plotted in the inset of Fig.fsuc? spfctraBtheioret.lchally by coPtlnuwllg t(()j_?fse atC;JbIC aéppro:
2. The simplest solution that can also replicate asymmetry is'pgation 0V(B) — vo; however, formulas different from Eqgs.

approximate/(B) — v, by a cubic polynomial iB. Recall that [12]-{16] are required, since there are no resonance figigs

the separated-resonance-linear-approximation required two Qg Boz- The procedure we used to obtain the cubic approx

rameters for each resonan@&; andb = dv(B,)/dB,. For the ations for 30.2° and 30.4° in Fig. 4 was as fo_Ilpv_vs: (i) Pick
two resonances, denote the four parameterByy By, by = four_BvaIu_es,Bl, B,, B3, andB,, that are in the vicinity of the )
dV(Bo,)/dBo,, andb, = dv(By,)/dB,,. Then there is a unique looping point. (Here we used 165, 170, 175, and 180 mT.) (i

> -
cubic polynomial inB (Hermite interpolation polynomial) (LZaIcuIatev_(I?k) ar?dJ_V‘i(kaN 1|‘ortk — 1’.2’ 3'bA." (”I)I Use t_hle .
passing througlB,, and B,, with slopesb, andb,, respec- agrange interpolation formula to specify cubic po ynomials ir
tively, B that pass through the four computed values respectively. F

instance, forv(B),

V(B) — Vo~ (B - BO].)(B - BOZ)(CO + Cls) [12] (B _ BZ)(B _ Bg)(B _ B4)

o=  DiBext DB a0 e e eE B
(Bo1 — Boo) VB (B—B)(B—By)([B— By 17]
. = b, + b, [14] ¥ (B4 — B)(B; — By)(B, — By’
! (801 - 802)2 '

and similarly for|Vi]- (B)|2. It is not necessary to use a cubic vs

It is also necessary to model the transition-dipole factor, whidiRear approximation, but because of the four-field nature of th
changes significantly near the looping point, as is indicated BppProximation, cubic is the more convenient to implement. (iv
the asymmetry in intensities in Fig. 3. It turns out that linegpubstitute these cubic approximations into Eq. [1]. The agre:
interpolation between the values B, and By, is usually mentin Fig. 4 at 30.2° and 30.4° is excellent.
satisfactory and again involves only the two squared-transition-Note that if the Boltzmann factor for the transition,
dipole factors already calculated for the separated-resonance-
linear-approximation: 4
[e7E4(B)/kT _ esz(B)/kT]/z efEl(B)/kT [18]
B-B B-B i=1
|Vij(B)|2 ~ ﬁ |Vij(Bol)|2 + ﬁ |Vij(BOZ)|2'
o o . o depends significantly oB in the region of the spectrum, then
[15] it can be incorporated into the cubic approximation by multi
plying it into the|V;;(B)|* factor before fitting the latter.
It would not be difficult to improve Eq. [15] to the quadratic We remark in passing that Pilbroet al. (3) used Che-
or cubic level, if required. The approximation that resulteyshev polynomials to fit the field variation of both the
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separation of energies and the transition probabilities, but [ QN IPEPEPEE EPEPEPI SPUPITIPEN PRI EFAPRFI B
(@) D=0.27cm™ :
E=0.0162cm™ g Mo~+52
g =2.0023

apparently primarily as an aid in computing the derivatives
with respect to field.

CONTRIBUTION OF A LOOPING TRANSITION WITHIN
A POWDER SPECTRUM (S = g, NON-AXIAL CASE)

The zero-field splitting of magnetic energy levels for ferric
transferrin D ~ 0.25 cm %) (14, 15 is on the order of the
X-band quantumyc ~ 0.3 cm ). As a result, there are
significant contributions to the observed EMR signals from
transitions between pairs of levels that are not degenerate at
zero magnetic fieldq, 11). The X-band experimental spectra
of transferrin oxalate provide a clear example of significant
absorption from a looping transition involving Levels 2 and 3 40 doe bl
(numbered from lowest in energy to highest) of a non-axially T 5 1 () £

Engery levels (cm™)

symmetric,S = g spin system, the Hamiltonian for which to Q(; " D=0.27cm™’
second order is given by Eq. [19]. 5 30 E=0.0162cm™'F
B 25 3 g=20023 __F
~ 4] 3 E
A=gpB-S+D(S -3 +EES-5). [9] § 20 5 e
3 15 3 ............... 2
> 3 T -
()] y

The experimental EMR spectra of transferrin oxalate can be2 10 3

approximately simulated in calculations that employ a distri- S s _ >0 Z \/ —
E - E
0 3 3

bution in zero-field splitting parameter$l). Further, the de-
tails of the experimental spectra are sensitive to salt and glyc-
erol content of the buffers. For the present discussion, we
choose asingle setof parameters that is within the range of
those characteristic of the transferrin oxalate spedra= FIG. 5. Typical oriented-molecule energy levels for tBe= gtrans-
2.0023;:D = 0.27 cmfl; E/D = 0.06. ferrin system where the two occurrences of a looping transition are withi

At fixed angles between the molecule and the magnefidinewidth. Here the magnetic field makes anglés) = (49°, 46.5°)
. . with the molecular axes. The spin-Hamiltonian parameters are given on t
field, the energy levels at zero field are twofold degener%%t. (a) Magnetic field dependence of the energy levels. The high-fiel

(Kramers doublets), while at high field they are dominategymptotiom, values are given on the right. At low and moderate fiefds,
by the Zeeman termgBBmy) and split linearly. (For larg®, is not a good quantum number, and it is convenient to label the stat
the my is asymptotically a good quantum number.) Theerially in order of increasing energy. Levels 2 and 3 have been indicate
energylevel diagram and the wansitions that contrbute Y te? s, 0 T 106 Sebrasnes M e 2 et s
the EMR spectra at _9'23 GHZ_ at fixed _a_ngBes 49°%, ¢ = final spectrum. The three curves emanating from the origin are the spli
46.5°, chosen to typify a looping transition where the 100Qmgs of the Kramers doublets. The other two curves are interdoubl
ing property is crucial, are illustrated in Fig. 5. The standatehnsitions, as labeled. The-2 3 transition, our primary interest here, is
linear approximationv(B) — vy ~ (B — Bg)b, Eq. [5], is indicated by a dotted line. A horizontal line has been drawn at the
appropriate only ifb = (dE/dB)/h is constant across the€xPerimental microwave frequency, 9.23 GHz.
lineshape. Inspection of Figure 5 reveals that where the
2-to-3 (dotted) curve intersects the horizontal line at 9.48ve within the 150 MHz linewidth. The two linear approx-
GHz (208 and 222 mT), not only @E/dB not constant, but imations ofv(B) at the resonance fields fit the exa(B) only
it changes sign within a linewidth. for a tiny fraction of the linewidth region. The spectrum
The contribution of the 2— 3 transition to the EMR calculated using a Gaussian lineshape function, Eq. [8],
spectrum can be accurately simulated by fittufB) — voto much too broad and intense, and it is without the centre
a cubic polynomial irB, Egs. [12]-[16], but it is very poorly structure when the sum-of-separated-resonances-linear-:
simulated by the sum-of-two-separated-resonances-linepreximation is used.
approximation of Egs. [5] and [9], as illustrated in Fig. 6, At selected angles the sum-of-two-separated-resonanc
with a Gaussian lineshape function and frequency widtimear approximation fails. But powder spectra result fron
parametelo, = 150 MHz. Note how the cubic fit is almostan average over angles, and looping transitions are strong
indistinguishable from the exact frequencies, and note hamgle-dependent. Moreover, the contribution of the loopin
the slopedv/dB changes dramatically from negative to postransition may be “diluted” by contributions from other

Enge
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0 100 200 300 400 500 600
B (mT)
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transitions. So the question arises: How much does angle-
averaging and dilution mute the near-looping-point contri-

PR VRN N TS SN TN NN ST SO DU T AT S S S N S T B

—_
wm

(a()) o D=0.27cm™
1 - E=0.0162cm™
¢ =46.5 g = 2.0023

5, = 150 MHz < cubic fit v, =923 GHz

inear fit to
<222 mT res.

IENEE T T AN S U B SR

- linear fit to
208 mT res.

238 transition: v(B) — v, (GHz)
O
(6]

054711 1T
0 100 200 300 400 500
B(mT) B, (mT)
PRI BRI RS I R
| (b) -~ D=027cm™" |
e
- 0=49° SN E=0.0162 cm™’
5 . , ' g =2.0023 —
= ¢=465" ' v, =923 GHz
- " - i \ 0 -
g5 : \
o = ' P 6. =150 MHz
1) — ! s . \ v
oM ' . \
< T 7 . . \
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/ . . N 100
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7 N Bx (mT)
S L e ma s o e S e e e B By (mT)
0 100 200 300 400 500
B(mT) FIG. 7. Resonance fields for the2 3 looping transition form a surface
in B space. The contours are for constanivhich runs from 1° to 59° in steps
1 | | | of 2°. For each value of, the angle$ runs from 90° to 0° in 1° steps, or to
e the smallest value at which there is still a resonance. fFee 35°, the
c _ () o D=027cm™’ L trajectories emerge from tH&gB, plane; forf = 39°, the trajectories are loops.
-g 9 = 49° ot E=00162cm™’ For each loop, the looping point falls in the gap of white space (at a non-integ
g‘ c o g =2.0023 B value of ¢) where the magnetic field vector from the origin is tangent to the
@ 2 ¢ =485 -7 "~ L surface.
GG .7 C
u— % 2T e,
S 20 - g R P .
O o N . butions to powder spectra, whether calculated accurately |
> 7 BN - — .
= NI ?
mcz S v,=923GHz | inaccurately ) i o
2 N ) Towards an answer, we first consider the distribution o
8 . c,=150MHz - resonance fields with respect to angle. More complicate
S L S — than the cylindrically symmetric ruby case of Fig. 1, the
0 100 200 300 400 500 resonance fields depend on two angles, and the analogc
B(mT) plot requires three dimensions. In Fig. 7, the resonanc

_ _ _ o __fields for the 2— 3 transition are plotted in 3 dimensions vs
FIG. 6. Simulation of the 2— 3 looping transition when the magnetic field

is at anglesf, ¢) = (49°, 46.5°). In this overlapping case, the cubic approximatiohhe magne_tlc fieldg,, By* B,). Beca_use of symmetry, a single
gives an excellent fit, while the linear approximation is too broad, too intense, dagtant suffices. The resonance fields map out the surface
without trace of the central structure. (a) Linear and cubic fits (solid lines) to tige Solid. Fixed angles for the magnetic field correspond to
“transition frequency minus microwave frequency” (dots). The shaded arear§y from the origin. In general, a ray intersects the solid &

bounded by, = +0.15 GHz, the frequency width parameter. (b) Absorptiog, points, the two partners of the looping transition. The
contribution using a Gaussian lineshape function, Eq. [8], with frequency width .

parametei, = 0.15 GHz. Dashed line, sum-of-two-separated-resonances Iinikgure has been generated by takl_ﬂg/all_,les every 2 de-
approximation, Eq. [9]; dots, exact and cubic approximation (which are indisti@r€€s, starting witld = 1° and ending withg = 59°. For
guishable on this plot), Egs. [8] and [16]. (c) Derivative of absorption. each value of), ¢ decreases in 1° steps from 90° to 0° or to
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50 [ E
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300 _— e
B [ 10F = e
200 | 0 ST TN TN TR TN I
L 100 150 200 250 300 350 400 450 500
100 F Resonance magnetic field B, (mT)
i o
] FIG. 9. Resonance field for the 2> 3 looping transition vs B,
0 30 60 90
30 .
60 90 buildup of resonances, and consequently sharp feature
0 whenB is near 140 and 440 mT; the dominating contribu-

FIG. 8. Resonance field for the 2> 3 looping transition v# and¢. Bis  tions correspond t® pointing close to the polar direction.

in mT. Both figures also show that the looping-points contribute t
the region from 180 to 240 mT.

the smallest value in the sequence for which there is still aThe contribution from each orientation is determined no
resonance field. The dots for sequenialalues are much only by the resonance field, but also by the intensity an
closer together than for sequenti@lvalues, so that the derivative dBy)/dB,. Figure 11 shows the intensity factor
“trajectories” for constan® give the appearance of contoursin 6|V,4(Bo)|? (Eq. [10]) as a function of the resonance field,
lines. In Fig. 7, thed = 35° trajectories emerge perpendicand Fig. 12 showsiV(Bg)/dB, (Eqg. [7]). Larger intensity
ularly from theB,B, plane, which is vertical and to the left,factormeans larger contribution, while greatdwB,)/dB|
while those forg = 37° form closed loops. The tightest loopmeans sharper but weaker contribution (Eq. [9]).
hasf = 59° and is towards the lower right. For each of these The contribution of the 2— 3 looping transition to the
loops, there are minimurp values below which there are nopowder spectrum is simulated in Fig. 13 by summing ove
resonance fields. When a ray from the origin is tangent &n isotropic distribution of angles. The cubic fit (solid line)
the surface, there is a single looping-point resonance fielts the sum-of-two-separated-resonances-linear-approxim
In Fig. 7, these tangent points occur where the density ©dn (dashed line) makes a quantitative but not qualitativ
points is smallest and would lie in the gaps of white spachfference of at most about 10% to the absorption spectrur
in the closed curves (delineated by dots at integer valuesTdie physical parameters are as given in Fig. 5, and tf
¢). Since the most pronounced features of the powdimneshape is Gaussian, Eq. [8], with, = 150 MHz.
spectrum occur where the density of points is greatest, oneThe 2— 3 looping transition is one of five transitions (of 15
can infer from Fig. 7 that the looping-point contributiongotal, see Fig. 5) that contribute significantly to the powde
will not be dramatic.

In Fig. 8 the same information is plotted as resonance field

strength vsf and ¢. From this plot one can infer that the L i
direction contributes a strongest feature around 140 mT and a 80 |- N
less strong feature near 440 mT. The highest field contribution r ]
is near 500 mT and corresponds Bopointing in a certain Tg 60 - T
direction in theyz plane. g r 1

In addition to these three-dimensional plots, there are two & 40 |- .
two-dimensional plots that we have used previoudly1(l) = i ]
that consist of the projections of Fig. 8 onto tBé and B¢ o0 L _'
planes. These portray the same information as Fig. 8, but r ]
make it easier to see certain features. Figure 9 displays R E Lyt
resonance field and shows that the minimum field bhasar 100 150 200 250 300 350 400 450 500
39°, while the maximum field haénear 13°. Figure 10 plots Resonance magnetic field B_ (mT)

¢ vs resonance field and shows that both the minimum and
maximum fields haveb = 90°. Both Figs. 9 and 10 show the FIG. 10. Resonance field for the 2> 3 looping transitiong vs B,
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o6l - / ] a cubic fit D =027 cm™’
o L S 1 A linear E =0.0162cm™’
§> i / 1 s approximation g = 2.0023
L 04 /‘ §= v, =9.23 GHz
= i /I as o, = 150 MHz
@ L / 4 8 =
£ 02 - ™
7] L / ] % T
L = . 3\
ok zZ ]
eova by b b bon g by e e Lo e byl
100 150 200 250 300 350 400 450 500 ———t———
Resonance magnetic field B (mT) 100 200 300 400 500
FIG. 11. Resonance field for the 2 3 looping transition, intensity factor B (mT)
sin ]V,4(By)|? vs By,
spectrum. The other four transitions are accurately simulated S S
by the linear approximation. The total simulated spectra are. b cubic fit D=0.27 cm™
shown in Fig. 14. The solid line is for the case that the>23 e I linear E=0.0162cm™
looping transition is done by cubic fit, whereas the dashed Iine% 5 approximation g = 2.0023
is for the case that the 2> 3 (as well as the four other 3 = Vo =923 GHz
transitions in both cases) is fit by linear approximation. After 5 5 6, = 150 MHz
taking an isotropic distribution over angle, the differences g -
between cubic and linear approximations are quantitative, butz 1
not qualitative, with maximum difference in absorption about 2 J
10% at any point. 2 L/’\———/\,’—\r
CONCLUSIONS AN R A A A
100 200 300 400 500
This analysis has employed cubic fits to the non-linear B (mT)

regions of energy level separations involved in magnetic

FIG. 13. Contribution of the 2— 3 looping transition to the powder

resonance tranSitiQnS-_lt prOVideS a convenient and efﬁCies'BEctrum by cubic fit (solid line) and by sum-of-two-separated-resonance
method of calculating field-swept EMR spectra that employigear-approximation (dashed line). Cubic fit makes a quantitative but ne

four constants that would be calculated regardless

alitative difference of at most about 10% at any point in the absorptio
y p p

whether the energy separation is linear or non-linear: tigeectrum. Physical parameters are given on the figure; Gaussian lineshape,
two resonance fields for a “looping” transition and the twé With o = 150 MHz.

0100

0.001

-0.001

dv(B,)/dB,
(@)
ryrrjyryvyrrryrrrrvyrore

PRV TN N B AT S SN SN SN S S N A A A

0002 Lot vty b by by e e b
100 150 200 250 300 350 400 450 500

Resonance magnetic field B, (mT)

FIG. 12. Resonance field for the 2> 3 looping transitiondv(B,)/dB,
VS B

gradientsdv(B)/dB at the resonance fields. Efficient compu-
tation methods become particularly important when simula
tions of the isotropic distributions of spins are attempted
The transition-probability factors vs magnetic field in the
examples presented here have been fit by linear extrapol
tion between the values at the two resonance fields becat
(i) linear appears to be sufficient, and (ii) the two value:
needed for a linear fit are automatically produced when th
resonance fields are calculated. (An exception is the “gra:
ing resonance” case treated in Fig. 4.) As pointed out in Re
(3), there may be examples where there is strongly nor
linear variation of transition probability or of linewidth over
a transition. In such cases, the method outlined here cou
be generalized to include these other variables.

For the explicit case of transferrin oxalate, cubic fit to the
energy separation of the looping-2 3 transition is crucial at
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cubic fit E=0.0162cm™ 1
w | Sl 2—-3 by linear g =2.0023
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oS
_Q L d
=
©
L L L L L e e e
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4
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c b 23 by D=027cm™’ 5.
2 cubic fit E =0.0162 cm™’
2 o | | 253 by linear g = 2.0023 6
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o< v
I
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2
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FIG. 14. Calculated spectrum as sum of all significant transitions between the
levels of theS = g transferrin system for an isotropic distribution of spins, with
parameters shown and with Gaussian lineshape (Eq. [8], ayith 150 MHz).
Contribution of the 2— 3 looping transition to the powder spectrum is by cubic
fit (solid line) and by linear approximation (dashed line); all other transitions by
linear approximation. (a) Absorption; (b) derivative of absorption.

selected angles. But in the isotropic average of a powder
spectrum and subsequent dilution from contributions of oth&?
transitions in the same spectral region, it produces quantitative ;959

but not so dramatic improvement over the usual sum-of-sepg
rated-resonances-linear-approximation.
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