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Looping transitions occur in field-swept electron magnetic res-
onance spectra near avoided crossings and involve a single pair of
energy levels that are in resonance at two magnetic field strengths,
before and after the avoided crossing. When the distance between
the two resonances approaches a linewidth, the usual simulation of
the spectra, which results from a linear approximation of the
dependence of the transition frequency on magnetic field, breaks
down. A cubic approximation to the transition frequency, which
can be obtained from the two resonance fields and the field-
derivatives of the transition frequencies, along with linear (or
better) interpolation of the transition-probability factor, restores
accurate simulation. The difference is crucial for accurate line
shapes at fixed angles, as in an oriented single crystal, but the
difference turns out to be a smaller change in relative intensity for
a powder spectrum. Spin- 3

2
Cr31 in ruby and spin- 5

2
Fe31 in

transferrin oxalate are treated as examples. © 1998 Academic Press

Key Words: simulation of S > 1; looping transition; chromium
ion; iron ion; transferrin.

INTRODUCTION

A “looping transition” occurs in field-swept electron mag-
netic resonance (EMR) spectra ofS . 1

2
systems at fields and

molecular orientations where energy levels have avoided cross-
ings: a given pair of energy levels is in resonance at two
separate magnetic fields, before and after the (avoided) cross-
ing. A plot of the two resonance fields as a function of the
orientational angles is typically U-shaped or, in some cases, a
closed oval. Figure 1 displays a looping transition in ruby.

When the separation between the two resonance fields of a
looping transition is within a few linewidths (in Fig. 1, whenu
is close to 30°), accurate simulation of the lineshape becomes
complicated. We present here a simple computational solution
for calculating EMR spectra for looping transitions. The key
idea is to approximate the highly non-linear difference between
the two energy levels as a cubic polynomial in the magnetic
field by using four constants already calculated in determining
the resonance fields (1, 2).

Looping transitions have been studied experimentally and
theoretically in depth by Pilbrowet al. (3) and by Wang and

Pilbrow (4) for S 5 3
2

systems. In the EMR of a ruby single
crystal at 9.521 GHz, looping transitions are important when
the angle between thec axis and the magnetic field is near 30°
and near 89°. Pilbrowet al. (3) were especially concerned with
the asymmetry in width and intensity of the two companion
resonances when close together. They simulated the field-
swept EMR spectra by computing, field-point by field-point,
the transition frequenciesv(B) and corresponding squared
transition-dipole matrix elementsuVij (B)u2 for use in the (fre-
quency-swept) formula for the spectral response functionS(B),

S~B! 5 C9uVij~B!u2f ~v~B! 2 v0, sv!. [1]

Here f(v 2 v0, sv) is a (frequency-swept) lineshape function
centered at the spectrometer operating frequencyv0, andsv is
the linewidth in the frequency domain. [Notation difference:
we usev0 where Pilbrowet al. (3) usevc, and we usev(B)
where they usev0(B).]

At each field strength the calculation ofv(B) and uVij (B)u2

requires a matrix diagonalization. In a powder simulation,
where the calculational effort is multiplied by the number of
orientations and the number of field points, Eq. [1] is often
simplified by assuming that the transition frequency varies
linearly with the magnetic field near resonance,v(B) 2 v0 ;
(B 2 B0)b, and that the transition-dipole is constant, to obtain
an equivalent, but approximate, field-swept lineshape function
valid nearB0:

S~B! , C9uVij~B0!u2f~~B 2 B0!b, sv!. [2]

Hereb is a constant, and the resonance fieldB0 is wherev0 5
v(B0). The considerations for making the frequency-to-field
conversion were discussed by Aasa and Va¨nngard (5) and by
Pilbrow (6). In the simplest case, the separation of the energy
levels near a transition is a linear function of magnetic field, so
that the field-normalized intensity of the lineshape is inversely
proportional to the effectiveg factor. More generally, the
field-normalized intensity is inversely proportional toubu 5
udv(B0)/dB0u, the derivative with respect to field of the sepa-
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ration of energy levels between which transition occurs (5).
Neither of these approximations is accurate at a looping tran-
sition.

EMR spectra provide many other examples, besides that of
ruby, of looping transitions in well-studied samples. Some of
these examples include theS 5 5

2
systems, oriented single

crystals of sodium- or lithium-compensated ferric centers in
a-quartz (7, 8), and anS5 3

2
example, alkali halide doped with

Cr(CN)6
32 (9). In biological samples, interdoublet transitions in

EMR of S5 5
2

systems provide examples of looping transitions
when the applied microwave frequency is in the range of 1 to
4 times the zero-field splitting parameterD. This condition is
found in X-band EMR of high-spin ferric transferrin (10, 11)
and in W-band simulations with parameters characteristic of
ferric lipoxygenase (12). To illustrate applications of the cubic
polynomial approach to converting frequency-swept line-
shapes to field-swept ones, we first revisit the ruby example of
Pilbrow et al. and then apply the technique to simulations of
the X-band EMR spectra relevant to transferrin oxalate.

HOW THE LINEAR APPROXIMATION FAILS NEAR A
LOOPING POINT: S 5 3

2
, AXIALLY SYMMETRIC CASE

To derive an approximate field-swept lineshape function is
to replace the right-hand side of Eq. [1] with an expression
explicitly simple in its dependence onB 2 B0 and accurate. To
illustrate the problem and its solution, we borrow the ruby case
discussed by Pilbrowet al. (3), which (i) provides a good
experimental example of a looping transition in single crystal
studies, and which (ii) is relatively simple. The ruby crystal
contains two magneticS 5 3

2
Cr31 impurity sites related by

inversion and has the axially symmetric spin-Hamiltonian (3),

Ĥ 5 b@ g\SzBz 1 g'~SxBx 1 SyBy!# 1 D~Sz
2 2

1
3
S2!. [3]

The experimental parameters (3) (with uncertainties omitted)

areg\ 5 1.9840,g' 5 1.9867, andD 5 25.747 GHz5
20.191699 cm21. Following Ref. (3), we replaceg\ andg' by
an isotropic averageg 5 1.9858. The energy levels of Eq. [3]
are easily obtained by diagonalizing a 43 4 matrix.

Pilbrow et al. (3) showed that when the angleu between the
magnetic field and the crystalc axis (z axis in Eq. [3]) was near
30° or 89°, the two branches of looping transitions are seen in
a magnetic field range that is a small multiple of the apparent
linewidth. We discuss here the 30° case, which we have
already visited in Fig. 1, where the coalescence and disappear-
ance of the looping transition near 30° is apparent. We setu 5
29.4° and plot in Fig. 2 the four energy levels asB increases
from 0 to 500 mT. Notice that the two middle levels, labeled by
2 and 3 in the figure, undergo an avoided crossing nearB 5
200 mT. The experimentally observed looping transition links
Level 2 with Level 4 and takes place at a frequency of 9.521
GHz 5 0.317586 cm21. The inset in Fig. 2 shows how the
energy separation between these two levels passes through
resonance first near 150 mT and a second time near 200 mT.
(In high magnetic field, Level 4 hasms 5 13

2
, while Level 2

hasms 5 21
2
.)

Next we plot in Fig. 3 the field-swept EMR spectrum foru
5 29.4°. The dots are an “exact” application of Eq. [1] withB
running from 120 to 225 mT in steps of 1 mT. The dot
spectrum can be compared to Fig. 2a of Ref. (3). The dashed
line in Fig. 3 is the result of using the usual “linear approxi-
mation” for v(B) at each of the two resonance fields, Eq. [2],
twice. The fit is not bad, but shows discrepancies between the
two resonances that get worse asu increases (see below).

FIG. 1. Resonance magnetic field versus polar angle for a typical looping
transition in ruby. See text for details.

FIG. 2. The magnetic-field dependence of the energy levels for an axially
symmetricS 5 3

2
system with HamiltonianĤ given by Eq. [3]. The magnetic

field B is set at an angle of 29.4° with thez axis, and we have takenD 5
25.747 GHz5 20.191699 cm21 andg\ 5 g' 5 g 5 1.9858. This is a case
discussed by Pilbrowet al.(3) for Cr31 transitions in a ruby single crystal. The
inset shows the dependence on magnetic field of the energy separation (in
cm21) of the Levels 2 and 4 in the looping transition discussed in the text,
observed experimentally at 9.521 GHz5 0.317586 cm21. Note that the 23
4 looping transition is created by an avoided crossing between Levels 2 and 3.
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The approximation (see Ref. (5)) that leads to Eq. [2] for a
field-swept lineshape results from expandingv(B) and
uVij (B)u2 about the resonance fieldB0 and keeping just the
leading terms,

v~B! 2 v0 5 ~B 2 B0!
dv~B0!

dB0
1

1

2
~B 2 B0!

2
d2v~B0!

dB0
2 1 · · · , [4]

;~B 2 B0!b [5]

uVij~B!u2 5 uVij~B0!u2 1 · · · , [6]

where

b 5
dv~B0!

dB0
5

1

h

dDE~B0!

dB0
. [7]

Equation [5] is alinear approximationfor v(B) 2 v0 as a function
of B. The inset in Fig. 2 shows the magnetic field dependence of
v(B) atu 5 29.4° for a looping transition. The horizontal line atv0

5 9.521 GHz intersects the curve at the two resonance fields,
149.646 and 201.961 mT. At these points, the gradientsb 5
dv(B0)/dB0 are 20.0001995 and 0.0002861 cm21/mT, respec-
tively. The approximation [4]–[7] has been used recently in sim-
ulations of bothS 5 2 (13) and5

2
(11) systems; numerous other

references can be found in Ref. (6).
To calculate Fig. 3, one needs an explicit lineshape function,

f (v 2 v0, sv). While a Lorentzian might be more fundamental, we
opted for a Gaussian to mimic (slightly simplified) what Pilbrow
et al. (3) used to fit the ruby spectra. In any event, the nature off
is not paramount to our main point, to be explicated later [approx-
imatingv(B) 2 v0 by a cubic polynomial inB 2 B0],

f ~v~B! 2 v0, sv! 5
1

svÎ2p
e2~v~B!2v0!2/ 2sv

2

[8]

,
1

ubu~sv /ubu!Î2p
e2~B2B0!2/ 2~sv /b!2

. [9]

For the width parametersv, we took 0.006uDu/h [0.0011502
cm21 5 34.482 MHz]—a compromise of the several values
used in Ref. (3) to fit the experiment.

To calculate the intensity factoruVij (B)u2,

uVij~B!u2 5 u^c i~B!uS z e1uc j~B!&u2, [10]

one must specify the directione1 of the microwave field, which
is perpendicular to the static fieldB, but not necessarily to the
crystalc( z) axis. Pilbrowet al. (3) took e1 to be 6° out of the
xy plane in their Fig. 2, but here we opted for simplicity and
took e1 to be in thex direction.

In this first sample calculation, patterned after Ref. (3), the
separation of the resonance fields is 52.3 mT, while the left and
right half-width-at half-maximum values are=2 ln 2 sv/ubu 5
7.99 and 5.57 mT, respectively. Thus the separation is a little
less than 4 times the sum of the half-width values. The sum-
of-two-separated-resonances (linear approximation) provides a
fair fit in the example shown, but the deviation in the middle
region is clearly visible in Fig. 3, as is a shift in the maximum
on the right. More pronounced deviations are visible asu
increases, and the resonance fields move closer together, coa-
lesce, and then disappear, as is shown in Fig. 4. Notice that in
Fig. 4 the total change inu is only 1°.

As in Fig. 3, the dots in Fig. 4 represent the spectral response
function based on Eq. [1] with a Gaussian (Eq. [8]) forf, and

FIG. 3. Exact and approximate calculations of spectra are compared for
the X-band (9.521 GHz) transitions between Levels 2 and 4 shown in Fig.
2, a case taken from Pilbrowet al. (3): (a) absorption, (b) derivative of
absorption. For the exact calculation, the energy matrix was diagonalized at
1 mT intervals using Eq. [1] (dots). This is compared with the sum-of-the-
two-resonances linear approximation (dashed line), for which only two
diagonalizations, one at each of the resonance fields, were used. For the
dots, the transition probability factor was determined at each field, while
for the dashed line only the two probabilities at each of the resonance fields
were used. The lineshapes were Gaussian in both cases. For the exact
calculation,v(B) 2 v0 is substituted directly into thef of Eq. [8], while the
sum-of-the-two-resonances linear approximation used Eq. [9]. In both
casessv was u0.006 Du 5 0.0011502 cm21 5 34.482 MHz. Remaining
physical parameters are given in the figure itself.
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the dashed line represents the sum of two separated resonance
contributions using the linear approximation forv(B). Notice
in particular that at 29.9°, the usual approximation is symmet-

rical and featureless compared to the true lineshape. At
29.975°, the usual approximation is almost a straight line. In
fact, ubu 5 udv(B0)/dB0u is so close to 0, thate2(B2B0)

2/ 2(sv /b)2

FIG. 4. Exact and approximate calculations of spectra are compared for theX-band (9.521 GHz) transitions between Levels 2 and 4 asu runs from 29.4° to 30.4°:
(a) absorption, (b) derivative of absorption. For the exact calculation, the energy matrix was diagonalized at 2 mT intervals using Eq. [1] (dots). This is compared (i)
with the sum-of-the-two-resonances linear approximation (dashed line), foru 5 29.4°, 29.7°, 29.9°, and 29.975°, which is just before coalescence at 29.975899 . . .°.
Also shown at all values ofu, including two values 30.2° and 30.4° that are past the coalescence angle and for which there are no resonance fields, is (ii) the “cubic
approximation” (solid curve that passes through most of the points), in whichv(B) 2 v0 is approximated by a cubic polynomial inB, and in which the squared
transition-dipole factors are approximated by linear interpolation (u 5 29.4°, 29.7°, 29.9°, and 29.975°) or by (for convenience—see text) cubic interpolation (u 5 30.2°
and 30.4°). The lineshapes were Gaussian (Eq. [8]), andsv wasu20.006Du 5 0.0011502 cm21 5 34.492 MHz. Remaining parameters are given in the figure itself.
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; 1, and the spectral response function approaches the con-
stant,

S~B0! , 2
C9uVij~B0!u2

svÎ2p
. [11]

The factor of 2 (cf. Eq. [1] and Eq. [9], the latter withb 5 0)
is from the equal contributions of the two resonances that are
coalescing towards the sameB0. This is what is happening at
29.975° in the sum-of-two-separated-resonances linear approx-
imation. Also shown in Fig. 4 via solid lines is the cubic
approximation, discussed next.

CUBIC APPROXIMATION NEAR THE LOOPING POINT

We saw in the preceding section that near a looping point the
magnetic-field derivative of the transition energy approaches
zero, causing the linear-approximation field-swept spectral for-
mula to fail. The crux of the problem is to approximate the
curve ofv(B) 2 v0 vs B, such as is plotted in the inset of Fig.
2. The simplest solution that can also replicate asymmetry is to
approximatev(B) 2 v0 by a cubic polynomial inB. Recall that
the separated-resonance-linear-approximation required two pa-
rameters for each resonance:B0 andb 5 dv(B0)/dB0. For the
two resonances, denote the four parameters byB01, B02, b1 5
dv(B01)/dB01, andb2 5 dv(B02)/dB02. Then there is a unique
cubic polynomial in B (Hermite interpolation polynomial)
passing throughB01 and B02 with slopesb1 and b2, respec-
tively,

v~B! 2 v0 , ~B 2 B01!~B 2 B02!~c0 1 c1B! [12]

c0 5 2
b1B02 1 b2B01

~B01 2 B02!
2 [13]

c1 5
b1 1 b2

~B01 2 B02!
2 . [14]

It is also necessary to model the transition-dipole factor, which
changes significantly near the looping point, as is indicated by
the asymmetry in intensities in Fig. 3. It turns out that linear
interpolation between the values atB01 and B02 is usually
satisfactory and again involves only the two squared-transition-
dipole factors already calculated for the separated-resonance-
linear-approximation:

uVij~B!u2 ,
B 2 B02

B01 2 B02
uVij~B01!u2 1

B 2 B01

B02 2 B01
uVij~B02!u2.

[15]

It would not be difficult to improve Eq. [15] to the quadratic
or cubic level, if required. The approximation that results

from substituting Eqs. [12] and [15] into Eq. [1] is what we
refer to as the “cubic approximation” (even though the
slower-varying squared-transition-dipole factors are only
approximated linearly):

S~B! 5 C9F B 2 B02

B01 2 B02
uVij~B01!u2 1

B 2 B01

B02 2 B01
uVij~B02!u2G

3 f~~B 2 B01!~B 2 B02!~c0 1 c1B!, sv!. @16#

The cubic approximation foru 5 29.4°, 29.7°, 29.9°, and
29.975° is plotted in Fig. 4 as an unbroken curve; it passes
through each of the “exact” points at the resolution of the figure
in this paper.

When u exceeds 29.9759°, the looping transition is no
longer in resonance at any field. Nevertheless, it may still be
seen in EMR if the frequency range of its linewidth overlaps
the microwave frequency. This is the case in Fig. 4 foru 5
30.2° and 30.4°. (In Fig. 2 of Ref. (3), the 30.4° spectrum is
shown experimentally.) It is quite straightforward to calculate
such spectra theoretically by continuing to use a cubic approx-
imation tov(B) 2 v0; however, formulas different from Eqs.
[12]–[16] are required, since there are no resonance fieldsB01

andB02. The procedure we used to obtain the cubic approxi-
mations for 30.2° and 30.4° in Fig. 4 was as follows: (i) Pick
four B values,B1, B2, B3, andB4, that are in the vicinity of the
looping point. (Here we used 165, 170, 175, and 180 mT.) (ii)
Calculatev(Bk) and uVij (Bk)u2 for k 5 1, 2, 3, 4. (iii) Use the
Lagrange interpolation formula to specify cubic polynomials in
B that pass through the four computed values respectively. For
instance, forv(B),

v~B! , v~B1!
~B 2 B2!~B 2 B3!~B 2 B4!

~B1 2 B2!~B1 2 B3!~B1 2 B4!
1 · · ·

1 v~B4!
~B 2 B1!~B 2 B2!~B 2 B3!

~B4 2 B1!~B4 2 B2!~B4 2 B3!
, [17]

and similarly foruVij (B)u2. It is not necessary to use a cubic vs
linear approximation, but because of the four-field nature of the
approximation, cubic is the more convenient to implement. (iv)
Substitute these cubic approximations into Eq. [1]. The agree-
ment in Fig. 4 at 30.2° and 30.4° is excellent.

Note that if the Boltzmann factor for the transition,

@e2E4~B!/kT 2 e2E2~B!/kT#/O
i51

4

e2Ei~B!/kT [18]

depends significantly onB in the region of the spectrum, then
it can be incorporated into the cubic approximation by multi-
plying it into the uVij (B)u2 factor before fitting the latter.

We remark in passing that Pilbrowet al. (3) used Che-
byshev polynomials to fit the field variation of both the
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separation of energies and the transition probabilities, but
apparently primarily as an aid in computing the derivatives
with respect to field.

CONTRIBUTION OF A LOOPING TRANSITION WITHIN
A POWDER SPECTRUM (S 5 5

2
, NON-AXIAL CASE)

The zero-field splitting of magnetic energy levels for ferric
transferrin (D ; 0.25 cm21) (14, 15) is on the order of the
X-band quantum (v/c ; 0.3 cm21). As a result, there are
significant contributions to the observed EMR signals from
transitions between pairs of levels that are not degenerate at
zero magnetic field (9, 11). The X-band experimental spectra
of transferrin oxalate provide a clear example of significant
absorption from a looping transition involving Levels 2 and 3
(numbered from lowest in energy to highest) of a non-axially
symmetric,S 5 5

2
spin system, the Hamiltonian for which to

second order is given by Eq. [19].

Ĥ 5 gbB z S 1 D~Sz
2 2

1
3

S2! 1 E~Sx
2 2 Sy

2!. [19]

The experimental EMR spectra of transferrin oxalate can be
approximately simulated in calculations that employ a distri-
bution in zero-field splitting parameters (11). Further, the de-
tails of the experimental spectra are sensitive to salt and glyc-
erol content of the buffers. For the present discussion, we
choose asingle setof parameters that is within the range of
those characteristic of the transferrin oxalate spectra:g 5
2.0023;D 5 0.27 cm21; E/D 5 0.06.

At fixed angles between the molecule and the magnetic
field, the energy levels at zero field are twofold degenerate
(Kramers doublets), while at high field they are dominated
by the Zeeman term (gbBms) and split linearly. (For largeB,
the ms is asymptotically a good quantum number.) The
energy-level diagram and the transitions that contribute to
the EMR spectra at 9.23 GHz at fixed anglesu 5 49°, f 5
46.5°, chosen to typify a looping transition where the loop-
ing property is crucial, are illustrated in Fig. 5. The standard
linear approximationv(B) 2 v0 ; (B 2 B0)b, Eq. [5], is
appropriate only ifb 5 (dE/dB)/h is constant across the
lineshape. Inspection of Figure 5 reveals that where the
2-to-3 (dotted) curve intersects the horizontal line at 9.23
GHz (208 and 222 mT), not only isdE/dB not constant, but
it changes sign within a linewidth.

The contribution of the 23 3 transition to the EMR
spectrum can be accurately simulated by fittingv(B) 2 v0 to
a cubic polynomial inB, Eqs. [12]–[16], but it is very poorly
simulated by the sum-of-two-separated-resonances-linear-
approximation of Eqs. [5] and [9], as illustrated in Fig. 6,
with a Gaussian lineshape function and frequency width
parametersv 5 150 MHz. Note how the cubic fit is almost
indistinguishable from the exact frequencies, and note how
the slopedv/dB changes dramatically from negative to pos-

itive within the 150 MHz linewidth. The two linear approx-
imations ofv(B) at the resonance fields fit the exactv(B) only
for a tiny fraction of the linewidth region. The spectrum
calculated using a Gaussian lineshape function, Eq. [8], is
much too broad and intense, and it is without the central
structure when the sum-of-separated-resonances-linear-ap-
proximation is used.

At selected angles the sum-of-two-separated-resonances
linear approximation fails. But powder spectra result from
an average over angles, and looping transitions are strongly
angle-dependent. Moreover, the contribution of the looping
transition may be “diluted” by contributions from other

FIG. 5. Typical oriented-molecule energy levels for theS 5 5

2
trans-

ferrin system where the two occurrences of a looping transition are within
a linewidth. Here the magnetic field makes angles (u, f) 5 (49°, 46.5°)
with the molecular axes. The spin-Hamiltonian parameters are given on the
plot. (a) Magnetic field dependence of the energy levels. The high-field
asymptoticms values are given on the right. At low and moderate fields,ms

is not a good quantum number, and it is convenient to label the states
serially in order of increasing energy. Levels 2 and 3 have been indicated
by dotted lines. (b) The field dependence of the six transition-energy
differences (in GHz) that contribute significant spectral amplitudes to the
final spectrum. The three curves emanating from the origin are the split-
tings of the Kramers doublets. The other two curves are interdoublet
transitions, as labeled. The 23 3 transition, our primary interest here, is
indicated by a dotted line. A horizontal line has been drawn at the
experimental microwave frequency, 9.23 GHz.
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transitions. So the question arises: How much does angle-
averaging and dilution mute the near-looping-point contri-

butions to powder spectra, whether calculated accurately or
inaccurately?

Towards an answer, we first consider the distribution of
resonance fields with respect to angle. More complicated
than the cylindrically symmetric ruby case of Fig. 1, the
resonance fields depend on two angles, and the analogous
plot requires three dimensions. In Fig. 7, the resonance
fields for the 23 3 transition are plotted in 3 dimensions vs
the magnetic field (Bx, By, Bz). Because of symmetry, a single
octant suffices. The resonance fields map out the surface of
a solid. Fixed angles for the magnetic field correspond to a
ray from the origin. In general, a ray intersects the solid at
two points, the two partners of the looping transition. The
figure has been generated by takingu values every 2 de-
grees, starting withu 5 1° and ending withu 5 59°. For
each value ofu, f decreases in 1° steps from 90° to 0° or to

FIG. 6. Simulation of the 23 3 looping transition when the magnetic field
is at angles (u, f) 5 (49°, 46.5°). In this overlapping case, the cubic approximation
gives an excellent fit, while the linear approximation is too broad, too intense, and
without trace of the central structure. (a) Linear and cubic fits (solid lines) to the
“transition frequency minus microwave frequency” (dots). The shaded area is
bounded by6sv 5 60.15 GHz, the frequency width parameter. (b) Absorption
contribution using a Gaussian lineshape function, Eq. [8], with frequency width
parametersv 5 0.15 GHz. Dashed line, sum-of-two-separated-resonances linear
approximation, Eq. [9]; dots, exact and cubic approximation (which are indistin-
guishable on this plot), Eqs. [8] and [16]. (c) Derivative of absorption.

FIG. 7. Resonance fields for the 23 3 looping transition form a surface
in B space. The contours are for constantu, which runs from 1° to 59° in steps
of 2°. For each value ofu, the anglef runs from 90° to 0° in 1° steps, or to
the smallest value at which there is still a resonance. Foru # 35°, the
trajectories emerge from theBxBz plane; foru $ 39°, the trajectories are loops.
For each loop, the looping point falls in the gap of white space (at a non-integer
value off) where the magnetic field vector from the origin is tangent to the
surface.
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the smallest value in the sequence for which there is still a
resonance field. The dots for sequentialf values are much
closer together than for sequentialu values, so that the
“trajectories” for constantu give the appearance of contour
lines. In Fig. 7, theu # 35° trajectories emerge perpendic-
ularly from theBxBz plane, which is vertical and to the left,
while those foru $ 37° form closed loops. The tightest loop
hasu 5 59° and is towards the lower right. For each of these
loops, there are minimumf values below which there are no
resonance fields. When a ray from the origin is tangent to
the surface, there is a single looping-point resonance field.
In Fig. 7, these tangent points occur where the density of
points is smallest and would lie in the gaps of white space
in the closed curves (delineated by dots at integer values of
f). Since the most pronounced features of the powder
spectrum occur where the density of points is greatest, one
can infer from Fig. 7 that the looping-point contributions
will not be dramatic.

In Fig. 8 the same information is plotted as resonance field
strength vsu and f. From this plot one can infer that thez
direction contributes a strongest feature around 140 mT and a
less strong feature near 440 mT. The highest field contribution
is near 500 mT and corresponds toB pointing in a certain
direction in theyz plane.

In addition to these three-dimensional plots, there are two
two-dimensional plots that we have used previously (1, 11)
that consist of the projections of Fig. 8 onto theBu andBf
planes. These portray the same information as Fig. 8, but
make it easier to see certain features. Figure 9 displaysu vs
resonance field and shows that the minimum field hasu near
39°, while the maximum field hasu near 13°. Figure 10 plots
f vs resonance field and shows that both the minimum and
maximum fields havef 5 90°. Both Figs. 9 and 10 show the

buildup of resonances, and consequently sharp features,
when B is near 140 and 440 mT; the dominating contribu-
tions correspond toB pointing close to the polar direction.
Both figures also show that the looping-points contribute to
the region from 180 to 240 mT.

The contribution from each orientation is determined not
only by the resonance field, but also by the intensity and
derivativedv(B0)/dB0. Figure 11 shows the intensity factor
sin uuV23(B0)u

2 (Eq. [10]) as a function of the resonance field,
and Fig. 12 showsdv(B0)/dB0 (Eq. [7]). Larger intensity
factormeans larger contribution, while greaterudv(B0)/dB0u
means sharper but weaker contribution (Eq. [9]).

The contribution of the 23 3 looping transition to the
powder spectrum is simulated in Fig. 13 by summing over
an isotropic distribution of angles. The cubic fit (solid line)
vs the sum-of-two-separated-resonances-linear-approxima-
tion (dashed line) makes a quantitative but not qualitative
difference of at most about 10% to the absorption spectrum.
The physical parameters are as given in Fig. 5, and the
lineshape is Gaussian, Eq. [8], withsv 5 150 MHz.

The 23 3 looping transition is one of five transitions (of 15
total, see Fig. 5) that contribute significantly to the powder

FIG. 8. Resonance field for the 23 3 looping transition vsu andf. B is
in mT.

FIG. 9. Resonance field for the 23 3 looping transition,u vs B0.

FIG. 10. Resonance field for the 23 3 looping transition,f vs B0.
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spectrum. The other four transitions are accurately simulated
by the linear approximation. The total simulated spectra are
shown in Fig. 14. The solid line is for the case that the 23 3
looping transition is done by cubic fit, whereas the dashed line
is for the case that the 23 3 (as well as the four other
transitions in both cases) is fit by linear approximation. After
taking an isotropic distribution over angle, the differences
between cubic and linear approximations are quantitative, but
not qualitative, with maximum difference in absorption about
10% at any point.

CONCLUSIONS

This analysis has employed cubic fits to the non-linear
regions of energy level separations involved in magnetic
resonance transitions. It provides a convenient and efficient
method of calculating field-swept EMR spectra that employs
four constants that would be calculated regardless of
whether the energy separation is linear or non-linear: the
two resonance fields for a “looping” transition and the two

gradientsdv(B)/dB at the resonance fields. Efficient compu-
tation methods become particularly important when simula-
tions of the isotropic distributions of spins are attempted.
The transition-probability factors vs magnetic field in the
examples presented here have been fit by linear extrapola-
tion between the values at the two resonance fields because
(i) linear appears to be sufficient, and (ii) the two values
needed for a linear fit are automatically produced when the
resonance fields are calculated. (An exception is the “graz-
ing resonance” case treated in Fig. 4.) As pointed out in Ref.
(3), there may be examples where there is strongly non-
linear variation of transition probability or of linewidth over
a transition. In such cases, the method outlined here could
be generalized to include these other variables.

For the explicit case of transferrin oxalate, cubic fit to the
energy separation of the looping 23 3 transition is crucial at

FIG. 11. Resonance field for the 23 3 looping transition, intensity factor
sin uuV23(B0)u2 vs B0.

FIG. 12. Resonance field for the 23 3 looping transition,dv(B0)/dB0

vs B0.

FIG. 13. Contribution of the 23 3 looping transition to the powder
spectrum by cubic fit (solid line) and by sum-of-two-separated-resonances-
linear-approximation (dashed line). Cubic fit makes a quantitative but not
qualitative difference of at most about 10% at any point in the absorption
spectrum. Physical parameters are given on the figure; Gaussian lineshape, Eq.
[8], with sv 5 150 MHz.
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selected angles. But in the isotropic average of a powder
spectrum and subsequent dilution from contributions of other
transitions in the same spectral region, it produces quantitative
but not so dramatic improvement over the usual sum-of-sepa-
rated-resonances-linear-approximation.
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